Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.

نویسندگان

  • Vanessa A Fitsanakis
  • Na Zhang
  • Joel G Anderson
  • Keith M Erikson
  • Malcolm J Avison
  • John C Gore
  • Michael Aschner
چکیده

Chronic exposure to manganese (Mn) may lead to a movement disorder due to preferential Mn accumulation in the globus pallidus and other basal ganglia nuclei. Iron (Fe) deficiency also results in increased brain Mn levels, as well as dysregulation of other trace metals. The relationship between Mn and Fe transport has been attributed to the fact that both metals can be transported via the same molecular mechanisms. It is not known, however, whether brain Mn distribution patterns due to increased Mn exposure vs. Fe deficiency are the same, or whether Fe supplementation would reverse or inhibit Mn deposition. To address these questions, we utilized four distinct experimental populations. Three separate groups of male Sprague-Dawley rats on different diets (control diet [MnT], Fe deficient [FeD], or Fe supplemented [FeS]) were given weekly intravenous Mn injections (3 mg Mn/kg body mass) for 14 weeks, whereas control (CN) rats were fed the control diet and received sterile saline injections. At the conclusion of the study, both blood and brain Mn and Fe levels were determined by atomic absorption spectroscopy and magnetic resonance imaging. The data indicate that changes in dietary Fe levels (either increased or decreased) result in regionally specific increases in brain Mn levels compared with CN or MnT animals. Furthermore, there was no difference in either Fe or Mn accumulation between FeS or FeD animals. These data suggest that dietary Fe manipulation, whether increased or decreased, may contribute to brain Mn deposition in populations vulnerable to increased Mn exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency

Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese ...

متن کامل

Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging.

Manganese (Mn) is an essential metal required for normal homeostasis. Humans chronically exposed to high Mn levels, however, may exhibit psychomotor signs secondary to increased brain Mn. As Mn and iron (Fe) share several cellular membrane transporters, decreased Fe levels resulting from Fe deficiency or anemia lead to increased brain Mn deposition. Conversely, decreased Mn levels are associate...

متن کامل

Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.

Manganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the t...

متن کامل

A model for the analysis of competitive relaxation effects of manganese and iron in vivo.

Manganese (Mn) and iron (Fe) are both paramagnetic species that can affect magnetic resonance relaxation rates. They also share common transport systems in vivo and thus in experimental models of metal exposure their effects on relaxation rates may interact in a complex fashion. Here we present a novel model to interpret the combined effects of Mn and Fe on MRI relaxation rates. To achieve vary...

متن کامل

Magnetic Resonance Imaging Modalities with

Abbreviations: BBB: Blood Brain Barrier; Ca: Calcium; CT: Computed Tomography; EM: Electro-Magnetic; EMA: European Medicines Agency; FDA: (U.S.) Food And Drug Administration; Fmri: Functional Magnetic Resonance Imaging; Gd: Gadolinium; GI: Gastro-Intestinal; IV: Intra-Venous; Mn: Manganese; MEMRI: Manganese-Enhanced MRI; Mn-DPDP: Chelated Manganese Nanoparticles; MRA: Magnetic Resonance Angiogr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2008